Table 1: p17 | MAb ID | HXB2 Location | Author's Location | Sequence | Neutralizing | Immunogen | Species(Isotype) | | | |-----------|--|---|--|--|--|---------------------------|--|--| | 1 L14.17 | p17(11–25) References: [Tatsum | p17(11–25 BRU)
ii (1990), Robert-Hebmann | GELDRWEKIRLRPGG
(1992b), Robert-Hebmann (19 | no
92a)] | Inactivated BRU | murine(IgG) | | | | 2 HyHIV-1 | p17(12–29) p17(12–29 JMH1) ELDKWEKIRLRPGGKTLY no rec p17 murine(IgG ₁) References: [Liu (1995), Ota & Ueda(1998)] • HyHIV-1: This paper compares the results of affinity constant (Ka) measurements of anti-p17 MAbs using double Ab methods versus the faster, isotope-free BIAcore system, and results were found to be similar for HyHIV-(1-6)—these six MAbs all bind to the first α helix of p17, a functional domain for both membrane binding and nuclear localization – Ota98b | | | | | | | | | 3 HyHIV-2 | p17(12–29) p17(12–29 JMH1) ELDKWEKIRLRPGGKTLY no rec p17 murine(IgG₁) References: [Liu (1995), Ota & Ueda(1998)] HyHIV-2: This paper compares the results of affinity constant (Ka) measurements of anti-p17 MAbs using double Ab methods versus the faster, isotope-free BIAcore system, and results were found to be similar for HyHIV-(1-6)—these six MAbs all bind to the first α helix of p17, a functional domain for both membrane binding and nuclear localization – Ota98b | | | | | | | | | 4 HyHIV-3 | p17(12–29) p17(12–29 JMH1) ELDKWEKIRLRPGGKTLY no rec p17 murine(IgG ₁) References: [Liu (1995), Ota & Ueda(1998)] • HyHIV-3: This paper compares the results of affinity constant (Ka) measurements of anti-p17 MAbs using double Ab methods versus the faster, isotope-free BIAcore system, and results were found to be similar for HyHIV-(1-6)—these six MAbs all bind to the first α helix of p17, a functional domain for both membrane binding and nuclear localization – Ota98b | | | | | | | | | 5 HyHIV-4 | HyHIV-4: epitor stains the surface HyHIV-4: This I Ab methods vers | e of infected cells indicating paper compares the results of the faster, isotope-free Eall bind to the first α helix | ELDKWEKIRLRPGGKTL-Y? da(1998)] sest estimate from JMH1 seque the antigen is exposed at the coof affinity constant (Ka) measu BIAcore system, and results we to of p17, a functional domain | ence– Ka is 1.8 scell surface –Ota urements of antiere found to be s | 98a
-p17 MAbs using double
imilar for HyHIV-(1-6)— | murine(IgG ₁) | | | | MAb ID | HXB2 Location | Author's Location | Sequence | Neutralizing | Immunogen | Species(Isotype) | | | |--------------|---|---|---|--|------------------------|---------------------------|--|--| | 6 HyHIV-5 | • HyHIV-5: This Ab methods ver | sus the faster, isotope-free E all bind to the first α helix | ELDKWEKIRLRPGGKTL
of affinity constant (Ka) measu
BIAcore system, and results we
of p17, a functional domain | arements of anti-
ere found to be s | imilar for HyHIV-(1-6) | _ | | | | 7 HyHIV-6 | HyHIV-6: This
Ab methods ver | sus the faster, isotope-free E all bind to the first α helix | ELDKWEKIRLRPGGKTL
of affinity constant (Ka) measu
BIAcore system, and results we
of p17, a functional domain | arements of anti-
ere found to be s | imilar for HyHIV-(1-6) | - | | | | 8 32/1.24.89 | p17(17–22) References: [Papsid • 32/1.24.89: Inhi | p17(17–22 IIIB)
lero (1989)]
bited infectivity of cell free | EKIRLR
virus –Papsidero89 | L | Viral lysate | murine(IgG) | | | | 9 3E11 | _ | p17(19–38 SIVmac)
en (1992), Nilsen (1996)]
enother MAb with this ID th | IRLPGGKKKYMLKHVV-
WAA
at recognizes integrase –Nilser | | Inact AGMTYO-7 | murine(IgG ₁) | | | | | • 3E11: Recognized an epitope present on HIV-2/SIVmac (MAC251/32H), SIVagm, HIV-1, and SIVmnd, demonstrating that the matrix protein of all nine HIV and SIV isolates tested in this study expresses at least one highly conserved immunogenic epitope –Otteken92 | | | | | | | | | 10 3B10 | p17(19–38) | p17(19–38 SIVmac) | IRLPGGKKKYMLKHVV-
WAA | no | Inact AGMTYO-7 | $murine(IgG_1)$ | | | | | References: [Otteken (1992)] 3B10: Recognized an epitope present on HIV-2/SIVmac (MAC251/32H), SIVagm, HIV-1, and SIVmnd, demonstrating that the matrix protein of all nine HIV and SIV isolates tested in this study expresses at least one conserved immunogenic epitope recognized serologically –Otteken92 | | | | | | | | ## **HIV Monoclonal Antibodies** | MAb ID | HXB2 Location | Author's Location | Sequence | Neutralizing | Immunogen | Species(Isotype) | | | |--------------|---|--------------------------------|--|--------------------|----------------------|---|--|--| | 11 HyHIV-21 | p17(30–52) | p17(30–52 JMH1) | KLKHIIWASRELERFAV-
NPGLLE | no | rec p17 | $murine(IgG_{2a})$ | | | | | References: [Liu (1995), Ota (1998)] | | | | | | | | | | – stains the surfa | ace of infected cells indicate | best estimate from JMH1 sequing the antigen is exposed at that the initial culture –Ota98a | e cell surface –ii | | - | | | | 12 -B4f8 | p17(51-65) | p17(51–65) | LETSEGCRQILGQLQ | no | IIIB lysate | $rat(IgG_{2a})$ | | | | | References: [Shang (1991)] • -B4f8: Did not bind live infected cells, only cells that had been made permeable with acetone –Shang91 | | | | | | | | | 13 12H-D3b3 | p17(62–78) | p17(62–78) | GQLQPSLQTGSEELRSL | no | IIIB lysate | $\operatorname{rat}(\operatorname{IgG}_{2a})$ | | | | | References: [Shang (1991)] • 12H-D3b3: Did not bind live infected cells, only cells that had been made permeable with acetone –Shang91 | | | | | | | | | 14 12G-A8g2 | p17(86–115) | p17(86–115) | YCVHQRIEIKDTKEALD-
KIEEEQNKSKKKA | no | IIIB lysate | $\mathrm{rat}(\mathrm{Ig}\mathrm{G}_{2a})$ | | | | | References: [Shang • 12G-A8g2: Bou as HPG30 –Shar | nd to 30-mer, but not to inte | ernal peptides – did not bind live | e infected cells – | antigenic domain k | known | | | | 15 12G-D7h11 | p17(86–115) | p17(86–115) | YCVHQRIEIKDTKEALD-
KIEEEQNKSKKKA | no | IIIB lysate | $rat(IgG_{2a})$ | | | | | References: [Shang • 12G-D7h11: Bo known as HPG3 | ound to 30-mer, but not to | internal peptides – did not bir | nd live infected | cells – antigenic de | omain | | | | 16 12I-D12g2 | p17(86–115) | p17(86–115) | YCVHQRIEIKDTKEALD-
KIEEEQNKSKKKA | no | IIIB lysate | $rat(IgG_{2a})$ | | | | | References: [Shang (1991)] • 12I-D12g2: Bound to 30-mer, but not to internal peptides – did not bind live infected cells – antigenic domain known as HPG30 –Shang91 | | | | | | | | | MAb ID | HXB2 Location | Author's Location | Sequence | Neutralizing | Immunogen | Species(Isotype) | | | | |---------------|--|--|---|---|---|---------------------------|--|--|--| | 17 12G-H1c7 | p17(86–115) | p17(86–115) | YCVHQRIEIKDTKEALD-
KIEEEQNKSKKKA | no | IIIB lysate | rat(IgG) | | | | | | References: [Shang (1991)] • 12G-H1c7: Bound to 30-mer, but not to internal peptides – did not bind live infected cells – antigenic domain known as HPG30 –Shang91 | | | | | | | | | | 18 polyclonal | p17(86–115) | p17(86–115) | YSVHQRIDVKDTKEALE-
KIEEEQNKSKKKA | L | peptide, oral,
cholera toxin
adjuvant | murine(IgA) | | | | | | Polyclonal secret | References: [Bukawa (1995)] • Polyclonal secretory IgA antibody raised by mucosal immunization is able to neutralize IIIB, SF2, and MN – HIV- 1 neutralization may be due to the V3, CD4 or HPG30 component of the multicomponent peptide immunogen | | | | | | | | | 19 HyHIV-15 | p17(87–115) p17(87–115 JMH1) L rec p17 murine(IgG ₁) References: [Liu (1995), Ota (1998)] • HyHIV-15: epitope uncertain, based on the best estimate from JMH1 sequence – Ka is 1.4 × 10 ⁷ M ⁻¹ for rec p17 – stains the surface of infected cells indicating the antigen is exposed at the cell surface – inhibited growth of HIV-1 JMH1 in MT-4 cells when added 24 hours after the initial culture –Ota98a | | | | | | | | | | 20 11H9 | | | | | Inact CBL-1 | murine(IgG ₁) | | | | | 21 C5126 | p17(113–122) References: [Hinkula • C5126: Defined e | | KKAQQAAADT of binding to native protein – W | no B reactive with | Inact HIV lysate
p53 and p17 –Hinkula9 | $murine(IgG_1\kappa)$ | | | | | 22 3-H-7 | 3-H-7: No cross-3-H-7: Called 3H expressed in the c | reactivity with HIV-2 ROD
17 – using a bicistronic vecto
cytoplasm of dividing CD4+ | KKAQQAAADT 1992b), Robert-Hebmann (1992 or SIV MAC by immunoblot— r, an intracellular Fab intrabody T cells—HXBIIIB and SI prim y acts both at the stage of nuc | Niedrig89
y, 3H7, can inhib
ary isolate virio | oit HIV-1 infection whe | ıg | | | | ## **HIV Monoclonal Antibodies** | MAb ID | HXB2 Location | Author's Location | Sequence | Neutralizing | Immunogen | Species(Isotype) | |--------------|--|--|---|--------------|-------------|--| | 23 4H2B1 | p17(119–132) Donor: R. B. Ferns at References: [Ferns (1 • 4H2B1: Reactive • 4H2B1: UK Med | Inact CBL-1 | murine(IgG ₁) | | | | | 24 1D9 | | | | | Inact CBL-1 | $murine(IgG_{2a})$ | | 25 4C9 | _ | | | | Inact CBL-1 | $\operatorname{murine}(\operatorname{IgG}_{2a})$ | | 26 9G5 | | | | | Inact CBL-1 | murine(IgM) | | 27 31-11 | p17(121–132) References: [Robert- | p17(121–132 BRU)
Hebmann (1992b), Robert- | DTGHSSQVSQNY
Hebmann (1992a)] | no | BRU | murine(IgG) | | 28 15-21 | p17(121–132) References: [Robert- | p17(121–132 BRU)
Hebmann (1992b), Robert | DTGHSSQVSQNY
Hebmann (1992a)] | no | BRU | murine(IgG) | | 29 sc-FV p17 | References: [Robert- • A single chain Ab | | DTGHSSQVSQNY (1998)] In anti-p17 MAb, and intracelly when the sc-FV was express | | | |